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We present an experimental determination of the universal

critical adsorption integrals

fP+ = fP+(x)dx and fP_ = f [P_(x)—1]dx, where P (x) are the one-phase (+) and the two-phase
(—) universal functions that scale the variation of the local order parameter near a free surface in the vi-
cinity of the Ising critical end point. From ellipsometric measurements on three critical binary liquid
mixtures we obtain fP+ =1.86%0.11, fP_ =1.611+0.04, and R, =1.1910.04 for their ratio, where
the quoted uncertainties represent one standard deviation. These values are compared with recent
theoretical and computational results. The renormalization-group calculation of Diehl and Smock
[Phys. Rev. B 47, 5841 (1993)] obtained [ P, =1.91, [ P_=1.44, and Ry, =1.33, while a Monte Carlo
simulation [M. Smock, H. W. Diehl, and D. P. Landau, Ber. Bunsenges. Phys. Chem. 98, 486 (1994)] ob-
tained fP+ =2.18, f P_=1.97,and R;;,=1.11. An interpolation to dimension d =3 of exact calcula-
tions for d =2 and 4 [G. Fl6ter and S. Dietrich, Z. Phys. B 97, 213 (1995)] obtained fP+ =2.27+0.33,

J P_=1.84+0.33, and Ry, =1.3240.07.

PACS number(s): 68.10.—m, 64.60.Fr, 05.70.Jk, 82.65.Dp

I. INTRODUCTION

When a critical binary liquid mixture approaches the
bulk phase transition, critical behavior is induced at the
noncritical liquid-vapor or liquid-solid surfaces. Let L
and H be the two molecular components of the mixture,
L (H) being the component having the pure state with
lower (higher) density. At all temperatures the com-
ponent with the lower surface tension is preferentially ad-
sorbed at the surface. As T,, the bulk critical tempera-
ture, is approached from either above or below, the thick-
ness of this adsorption profile diverges proportional to
the correlation length. This phenomenon, known as criti-
cal adsorption, is described by the local order parameter’s
variation with depth into the surface,

m(z,t)=@ (z,t)—@ (+»,0), z=0. (1)

Here z is zero at the surface and positive in the liquid.
@1 (z,t) is the local volume fraction and ¢ (+ o,0) is the
bulk critical volume fraction of the L component, while
t=|T —T,|/T, is the reduced temperature.

As the critical temperature is approached from the
one-phase (subscript +) or the two-phase (subscript —)
region, the critical adsorption profile at the liquid-vapor
surface scales as

z+z
m,(z,t)=M_tPP, =

) 2)

+

where the surface scaling functions P, (x) and P_(x)
have different forms, but are both universal. Here 8 and
M _ are the usual critical exponent and coefficient of the
bulk order parameter in the two-phase region

m_(+ow,t)=M_1tP. The extrapolation length z, is-

nonuniversal and independent of ¢ and z. The bulk corre-
lation length &, =&y, ¢t ¥ has the universal amplitude ra-
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tio [1]

So+.
Eo—

Taking into account Eq. (3), the nonuniversal behavior in
Eq. (2) arises solely from the two bulk amplitudes &,
and M_ and the surface parameter z,. Equation (2) as-
sumes that component L is preferentially adsorbed at the
surface. If instead H is preferentially adsorbed, then the
critical adsorption profile at the liquid-vapor surface
would be

=1.96 . (3)

z+z,
Er

This equation only holds in the one-phase region. The
scaling function P (x) in Egs. (2) and (4) are expected to
be identical. In Ref. [2] we discuss certain unsatisfactory
aspects of scaling for the case in which the heavier com-
ponent H is adsorbed at the upper liquid-vapor surface in
the two-phase region. This case is not experimentally
studied in this publication.

Equation (2) was originally derived using mean-field
theory [3], where the solutions are

P (x)=2"2csch(x) , (5)
P_(x)=coth(x/2) . (6)

m,(z,t)=—M _tPP

(4)

Equations (2), (5), and (6) correctly imply that the surface
is ordered both above and below T,.. Although the sur-
face is not undergoing an ordering transition at T, the
ordering transition occurring in the bulk stimulates the
critical scaling at the surface.

Fisher and de Gennes [4] supported Eq. (2) using scal-
ing arguments valid beyond mean-field theory. They pro-
posed that the scaling functions have the limits
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Pi(x)—Pi(w)=P, se™* @)
for x >>1, with P, (0 )=0and P_(o)=1, and
P (x)=cyx P (8)

for x <<1, where P, , and c. are universal constants.
The scaling in Eq. (2) has been tested extensively using a
variety of experimental probes [5]. Reflectometry [6,7]
and ellipsometry [6,8,9] studies have verified the ex-
ponential decay of Eq. (7) beyond doubt and have provid-
ed evidence of the power-law behavior of Eq. (8) for small
x. These studies were testing theoretical functions P (x)
with the correct asymptotic forms, but with multiple ad-
justable parameters. They were unable to pinpoint the
scaling functions quantitatively over the entire range of x.

More recently theoretical determinations of the scaling
functions with zero adjustable parameters have become
available. Diehl and Smock [10] have published a
renormalization-group one-loop calculation for P (x),
while Smock, Diehl, and Landau [11] have fitted func-
tions P, (x) to the Monte Carlo data of Landau and
Binder [12]. In addition, Flter and Dietrich [13] have
provided universal quantities related to critical adsorp-
tion with an interpolation to dimension d =3 of exact
calculations for d =2 and 4. The purpose of this paper is
to provide an experimental test of these three recent
theories.

Over the past four years we have used ellipsometry
to study critical adsorption at the liquid-vapor surface
of seven different critical binary liquid mixtures:
cyclohexane-methanol (CM) [14]; aniline-cyclohexane
(AC) and isobutyric acid—water (IW) [15]; hexadecane-
acetone (HA) [16]; nitrobenzene—n-hexane (NH), 2,6
lutidine—water (LW), and 3-methylpyridine-D,0 (PD)
[17]. The mixtures CM and HA undergo wetting in the
two-phase region, so that critical adsorption was studied
only in the one-phase region. For the other five mixtures
both the one, and the two-phase regions were studied.
For LW and PD the measurements were taken near the
lower critical point, while the measurements on all the
other samples were taken near the upper critical point.
In Refs. [15] and [17] we used the ellipsometric measure-
ments for AC, IW, NH, LW, and PD to determine an ex-
perimental value for the universal ratio

_In

RMA - 'y (9)
[y
where
+
JPi=[ "Pi(xdx (10)
and
fP_=f0+°°[P_(x)—1]dx . (1
In this paper we present a more sophisticated

modification of this analysis and obtain separate measure-
ments of the universal integrals f P, and f P_ for our
seven mixtures. We also obtain f P for the one-phase
ellipsometric data taken by Schmidt [8] on the upper

critical point mixture methylcyclohexane (C,H,,)-
perfluoromethylcyclohexane (C,F,), which will be re-
ferred to as Sch. In order to derive values for f P, from
the ellipsometric data, experimental values for the bulk
amplitudes £, and M _ are required. The ratio R, , is
less fundamental, but has the advantage of being indepen-
dent of these system-dependent amplitudes.

In Sec. II we compare the theoretical functions P (x)
from the renormalization-group calculation of Ref. [10]
with the Monte Carlo simulation of Ref. [11]. In Sec. III
we incorporate P (x) into a model of the optical dielec-
tric surface profile €(z,¢), while in Sec. IV we use this
model £(z,1) profile to derive a relation between the ellip-
sometric data and the universal integrals f P. The de-
tails of this derivation are provided in Appendixes A and
B. The relevant experimental details are discussed in Sec.
V. In Sec. VI we present experimental values for f y
and analyze the accuracy of our method of extracting
these universal integrals from the experimental data. Fi-
nally, in Sec. VII we summarize the results and draw con-
clusions from our experimental study. Our most reliable
ellipsometric data are provided in Appendix C.

II. THEORETICAL SURFACE
SCALING FUNCTIONS P, (x)

Figures 1(a) and 1(b) show the theoretical scaling func-
tions P (x), defined in Eq. (2), for the mean-field (dashed
line), the renormalization-group (RG, solid line), and the
Monte Carlo (MC, solid line) simulation. The mean-field
profiles are from Egs. (5) and (6). The universal integrals
f P, over the mean-field profiles are infinite, as defined
in Egs. (10) and (11).

Diehl and Smock [10] published the scaling functions
P (x) for the renormalization-group one-loop calcula-
tion in dimension d =4 —e. These functions are shown in
Figs. 1(a) and 1(b) for d =3. For the x —0 asymptotic
region they obtained

P, (x)~0.717x "1/2, (12)
P_(x)~1.113x 12, (13)

In Egs. (12) and (13) the expected /v exponent has been
set to its approximate value of 0.5 and higher-order terms
have been neglected. For the x — o« asymptotic region
they obtain

P.(x)~1.621e~, (14)

P_(x)—1~(0.028+0.0098x)e ~* . (15)

The results (12)-(15), along with tabled P(x) values,
were supplied to us by Diehl and Smock. After compar-
ing the tabled P(x) values with the asymptotic func-
tions (12)-(15), we concluded that the upper limit for the
x —0 asymptotic behavior was approximately x,=0.5,
while the lower limit for the x — o« asymptotic behavior
was approximately x, =3.

To determine the integrals f P, we integrated Egs.
(12)-(15) over the above-mentioned asymptotic regions
and used Diehl and Smock’s numerical values for P (x)
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to estimate the integrals over the crossover region in be-
tween. For the renormalization-group functions, we ob-
tain fP+ =1.91, fP_ =1.44, and R, ,=1.33 for the
universal quantities defined in Eq. (9)—(11).

Burkhardt and Diehl [18] prove the exact equivalence
between critical adsorption and the extraordinary transi-
tion for magnetic systems. Landau and Binder [12] have
published a Monte Carlo study for the extraordinary
transition in an Ising film. Smock, Diehl, and Landau
applied the scaling of Eq. (2) to these data and obtained
fitted scaling functions P (x) [11]. These functions were
provided to us in tabled form, along with the x —0,
asymptotic results

P (x)~0.866x AV, (16)
P_(x)~1.22x "8/ (17)

From the tabled P, (x) values we estimated the x — o
asymptotic forms
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FIG. 1. Graphs showing the theoretical universal surface
scaling functions (a) P, (x) and (b) P_(x)—1. The functions are
represented by dashed lines for the mean-field theory and solid
lines for the renormalization-group and Monte Carlo theories,
labeled RG and MC, respectively.

P, (x)~1.5¢7%, (18)
P_(x)—1~1.0e *. (19)

For these Monte Carlo results we concluded that the
upper limit for the x —0 asymptotic behavior was ap-
proximately x, =0.2, while the lower limit for the x —
asymptotic behavior was approximately x,=1. Using
the method of integration described for the Diehl and
Smock functions above, we obtain f P, =2.18,
fP_ =1.97, and Ry, ,=1.11 for the Monte Carlo func-
tions.

A comparison of Egs. (12)—(15) with (16)-(19) demon-
strates that the two theories are in reasonable agreement
for the values of ¢, and P, but not for P_ ,. Figures
2(a) and 2(b) are semilogarithmic plots of P, (x) and
P_(x)—1, where the exponential decay region can be
clearly seen. The renormalization-group and Monte Car-
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FIG. 2. Semilogarithmic plots of the scaling functions (a)
P (x) and (b) P_(x)—1. The solid lines show the theoretical
renormalization-group and Monte Carlo scaling functions, la-
beled RG and MC, respectively. The straight dashed lines are
the Monte Carlo asymptotic exponential functions given by Egs.
(18) and (19) and the renormalization-group asymptotic ex-
ponential function given by Eq. (15) in (b).
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lo scaling functions are represented by the solid lines, la-
beled RG and MC, respectively. The Monte Carlo
asymptotic functions of Eqs. (18) and (19) are represent-
ed by dashed lines and the renormalization-group asymp-
totic function of Eq. (15) is represented by the lower
dashed line in Fig. 2(b). The asymptotic functions are
straight lines with y intercepts of P, ., but with slopes
independent of P, . Figure 2(a) shows the strong agree-
ment for P ., while Fig. 2(b) shows the strong disagree-
ment for P_ ,, between the two theories. In Fig. 2(b) we
observe that the renormalization-group profile ap-
proaches its asymptotic behavior very slowly, while the
Monte Carlo profile oscillates about the exponential func-
tion given by Eq. (19). This latter effect could be due to
finite-size effects in the Monte Carlo simulation.

A third set of theoretical results by Floter and Dietrich
[13] calculates critical adsorption quantities for dimen-
sion d =3 by interpolation using exact results for d =2
and 4. They obtained ¢, =0.94%0.05 and c_=1.24
+0.05, in reasonable agreement with the Monte Carlo
values in Eqgs. (16) and (17). They also obtained the
universal quantities g, and R4, related to the quantities
of Egs. (9)—(11) through the relations [P, =g, /(v—p)
and Ry, =R &p— /€p+. Using their results in these rela-
tions we obtain [P, =2.27+0.33, [P_=1.84+0.33,
and R, ,=1.32%£0.07. Given the large uncertainties on
the f P values, these individual integrals are in agree-
ment with the Monte Carlo results. However, the R, ,
result is in much Dbetter agreement with the
renormalization-group value.

The scaling functions P, (x) become infinite as x —0.
If the extrapolation length z, in Eq. (2) were zero, m (0,t)
would be infinite, which is physically unreasonable.
Equation (1) provides a stronger limit on the order pa-
rameter at the surface m (0,¢). The volume fraction of
component L at the surface ¢; (0,¢) has a lower limit of 0
and an upper limit of 1, corresponding respectively, to a
layer of pure H or pure L at the liquid-vapor surface.

Consequently, according to Eq. (1),
—@r(+0,00=m(0,t)<1—¢@,(+ »,0) . (20)

The component L or H that has the lower liquid-vapor
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surface tension in the pure state is preferentially adsorbed
at the liquid-vapor surface of the mixture. The upper
limit in Eq. (20) is relevant if component L is preferential-
ly adsorbed. The mixtures for which this is the case will
be referred to as group L. The mixtures AC, IW, LW,
NH, and PD belong to this group. The lower limit in Eq.
(20) is relevant if component H is preferentially adsorbed.
We call this group H, which includes CM, HA, and Sch.

If we apply Eq. (20) to Eq. (2) for group L or to Eq. (4)
for group H, we obtain

1—@;(+ «,0)

P (z,/64)=
+(z, /84 M_iP

, (21)

where i =L (H) for group L (H). Equation (4) applies to’
the one-phase region only, therefore Eq. (21) is only valid
in the one-phase region for group H. Equation (21) pro-
vides a lower limit z, ;. on z,. We will set z, =z, ;.. For
all eight mixtures, the value of the right-hand side of Eq.
(21) is large enough over the range of reduced tempera-
tures studied that the asymptotic form of Eq. (8) can be
applied approximately to P (z,;,/€+). Using Eq. (8) in
Eq. (21) we obtain

1—@,(+0,0) | "8

M. (22)

Ze=2Zo min— 50+

In Eq. (22), z, is independent of reduced temperature.
Furthermore, z, has the same value in the one- and the
two-phase region because of the relation [10]

§o+(C+ )V/Bzgo_(c_ )V/B .

In Table I, values of z, implied by Eq. (22) are given for
each liquid mixture. The value for ¢, was taken from
Eq. (16). Values and references for the parameters &, ,
@ (+ ©,0), and M _ are provided in Table II.

(23)

III. OPTICAL DIELECTRIC PROFILE ¢(z,t)

The local order parameter m (z,¢) is commonly con-
verted to the optical dielectric profile £(z,¢) by use of the
two-component Clausius-Mossotti relation [19]

@rz,t)y, +H[1—@r(z,8) g =n(z1t), (24)

TABLE 1. Values of the liquid mixture quantities that must be small in order that the approxima-

tions in this paper are valid.

First-order
correction in A(z,t)

Mixture z, (1071° m) Amax of Eq. (A2) R,(0)
AC 13.1 —0.025 —0.004 0.59
Iw 6.58 0.017 —0.002 —0.33
Lw 3.30 0.058 —0.004 —0.64
NH 10.4 —0.035 —0.002 0.98
PD 2.56 0.058 —0.003 —0.58
CM 3.04 —0.043 0.0006 0.44
HA 6.43 —0.020 0.0007 0.36
Sch 7.55 —0.038 0.005 0.61
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TABLE II. Nonuniversal parameters required for the analysis of the eight binary liquid mixtures
studied in this paper.

Mixture eg” T M_ &+ (A) £y (AP @ (+ »,0)
AC 2.5163 2.0924 1.034+0.03¢° 2.3+0.2¢ 1.7 0.639°
Iw 1.773 1.94 0.783+0.03f 3.63+0.07° 1.7 0.5028
LW 1.773 2.217" 0.93140.007 2.540.3) 1.8 0.3015%
NH 2.4218 1.8909 0.770+0.006' 3.54+0.12™ 1.95 0.619"
PD 1.80 2.25 0.558+0.007° 5.240.5° 1.91 0.3103%
CM 1.766 2.0924 0.755+0.0034 3.2440.239 1.98 0.676%
HA 1.8463 2.0578 1.0240.005" 2.0+0.2° 1.59 0.482"
Sch 1.651 2.025 0.9684-0.009° 2.79+0.3¢ 2.57 0.50*

2Reference [28], except where noted.
®See Appendix B.

‘References [29,30].

dReferences [29,31].

“Reference [29].

fReference [19].

8Reference [32].

hReference [33).

iReference [34].

iReference [35].

where volume changes on mixing, which are typically
only 1-2 % for most mixtures, have been ignored. In Eq.
(24) for i =L and H,
g1
i g, +2 "’

(25)

g; is the optical dielectric constant of pure liquid i and

_ &lz,0)—1

elz,0)+2 ° 26

n(z,t)
If we invert Eq. (24) and subtract off the z— + oo result
we obtain

n(z,t) —n(+ 0,t)
ML~ Mu

@z, t)—@p(+ o0,8)= 27)

Applying the scaling of Eq. (2) [or Eq. (4) for group H in
the one-phase region] gives

z+z,
M_1t# Py —P ()
&+
=[n(z,)—n(+w,0)]/(Ay), (28)
where
N —ny for group L
An= ny—m, for group H . (29)

If we use Eq. (26) in Eq. (28) and define the parameter
z+z,
§1
then we obtain the optical dielectric profile

_ 14+2[Alz,0) +q(+ 0,1)]
1—[A(z,t)+n(+ o,2)] ’

The parameter A(z,¢) is small because An and ¥ are

Alz,t)=(An)M _tP | P,

—Pi(oo)] ,  (30)

e(z,t) z=0. (31)

kReference [17].
'References [30,36].
mReference [37].
"Reference [36].
°Reference [38].
PReference [24].
9Reference [39].
"Reference [40].
SReference [41].
‘Reference [8].

small. It will be used in a power series expansion in Ap-
pendix A. The maximum value occurs at z =0 and ¢ =0,
which can be seen by applying the asymptotic form of
Eq. (8). In this limit m (z,¢) is independent of ¢ and

Amaxz(A’rI )M—Ci(goi/ze )B/V (32)

is the maximum magnitude of A(z,¢). Values for A_,, for
each of the eight samples are given in Table I.

To model the optical dielectric profile (z,¢), both the
critical profile of Eq. (31) and the noncritical liquid-vapor
profile must be included. The noncritical profile must
model the variation of the total number density of parti-
cles from its effectively zero value in the bulk vapor to
the much denser bulk liquid value. This profile cannot be
modeled accurately with zero adjustable parameters.
Previous analyses and experiments [6,15] have found it to
be only a few molecular layers thick, while the critical
profile, which is scaled by the correlation length £, is
10-100 molecular layers thick for the reduced tempera-
ture ranges analyzed in this paper. For this reason our
model will confine the noncritical profile to the vapor side
(z <0) of the surface and neglect any perturbation that it
could have on the critical profile on the liquid side
(z>0). Near the surface in the liquid, where the power-
law asymptotic form of Eq. (8) holds, the volume fraction
@ (z,t) is independent of t. We thus assume that the
noncritical profile on the vapor side of the surface has
negligible ¢ dependence.

The approximation of Eq. (22) is equivalent to assum-
ing that the surface is pure L (H) for group L (group H).
If this assumption is valid, the noncritical profile for z <0
should be approximately the same as the liquid-vapor
profile of the pure L (H) liquid. Thus our model will as-
sume that for z <0, &(z) is the profile of the pure liquid L
(H). The mean-field profile for the liquid-vapor surface
of pure component i is

max
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g, —1
E(Z)—l+m‘;)‘ . (33)

The noncritical vapor correlation length &, scales the
thickness of the noncritical profile and is typically 1-2 A.
The profile in Eq. (33) will be modified so that it will be
confined to the vapor side (z <0) of the surface and will
satisfy the condition of continuity of €(z) at z=0. To ac-
complish this we shift the noncritical profile left by z,
with the transformation z-—z+z, and change the
numerator on the right-hand side of Eq. (33) so that
€(0)=g¢; is satisfied. This provides the profile to be used
in our analysis,
(g;—D)[1+exp(—z,/Ep)]

=1+
) = o —(z 12,076,

z<0. (34

In Sec. IV ellipsometric measurements of the liquid-vapor
surface of pure component i will be used to fix £;,. This
leaves the noncritical profile of Eq. (34) with zero adjust-
able parameters.

Figure 3 shows the optical dielectric profile of Egs. (31)
and (34) for the mixtures NH and LW in the one-phase
region at ¢t =0.01. Although our model provides con-
tinuity of €(z) at z =0, it does not provide continuity of
the first derivative de/dz. This discontinuity is much
larger for LW, IW, and PD, where the component with
the higher optical dielectric constant is preferentially ad-
sorbed. The results of our experimental analysis in Sec. V
do not seem to be significantly better or worse for these
three mixtures than for the other five mixtures.

The primary purpose of this paper is to test the critical
profile. We therefore proceed in Sec. IV with the strategy
of making our analysis of the experimental data minimal-
ly sensitive to the specific form assumed for the noncriti-
cal profile. As a consequence, the analysis does not
stringently test the accuracy of Eq. (34) and any inaccura-

23 1 1 1 1 ] T 1 T 1
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FIG. 3. Plots of the model optical dielectric surface profile
€(z) as a function of z, the depth into the liquid-vapor surface.
The profile is shown for the mixtures NH and LW, as labeled in
the graph.

cy in Eq. (34) should only add a small error to our con-
clusions for the critical profile.

IV. ELLIPSOMETRY

Phase-modulated ellipsometry [20] is a particularly
effective method for probing the order-parameter profile.
A procedure established by Beaglehole [21] is to monitor
the coefficient of ellipticity at the Brewster angle, defined
by

14
el (35)

where r, and r; are the complex reflection amplitudes for
the two independent polarizations. For thin profiles
(compared with the wavelength of light A=633 nm) the
signal is described by the Drude equation [22]

5= — T Ve(+ 0,t)+e(— w,t)

p A e(+ oo,t)—e(— o,t)

< f+oo [e(z, ) —e(+ 0, 0)][elz,t) —e(—w,0)] ,

— o0 E(Z, t)

(36)

The Drude equation is only valid for surface profile
thicknesses that are thin compared to A. Since z is scaled
by £ in Eq. (2), this corresponds to & <<A, which occurs
far from T,. For thicker profiles (smaller reduced tem-
peratures), Maxwell’s equations have to be solvéd numer-
ically [6,23,24].

The spatial separation of the critical and noncritical
profiles in our model implies that

pP=PnctpPc » 37

where the noncritical part (pyc) is the integral from — o
to O and the critical part (p) is the integral from O to
+ . The derivations of g and pyc are provided in Ap-
pendixes A and B. In the calculation of ps, Eq. (31) is
used for e€(z,t) and e(+ o,?) in Eq. (36), while
g(—o0,t)=1 for the bulk vapor phase. Equation (AS5)
gives the final result.

As discussed in Sec. III, the noncritical profile is as-
sumed to be approximately the same as the liquid-vapor
profile of the pure liquid L (H) for group L (H) on the
vapor side (z <0). This enables pyc to be expressed in
terms of P, the ellipsometric measurement of the
liquid-vapor surface of pure L (H). The result is given in
Eq. (B6).

Using Egs. (A5) and (B6) in Eq. (37) we obtain

p=Pc— 5 S (NAMM _&o. (fpi ]tﬁ—v , (39
_ e, +1 |7 el
P g +1 e(+o0,0)—1

X[1+ Ry (1) 1Ppure
T DA o 1O+ L], 39

where ¢€; is the optical dielectric constant of the preferen-
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FIG. 4. Graph of the background term pgg as a function of
reduced temperature. ppg is shown for the mixtures PD, LW,
and NH as labeled, with the two-phase curve represented by the
dashed lines above the label and the one-phase curve by the
solid lines below. For each mixture pgg has been calculated us-
ing Eq. (39), with the fitted p,,. values from Table IV.

tially adsorbed pure component. The quantities R (),
fe(8),I,(t), and I,(t), defined in Egs. (B7), (A4), (A8), and
(A9), have a weak nondiverging dependence on t. There-
fore the background term ppg has a weak nondiverging
dependence on ¢, while the second term in Eq. (38)
diverges as t#7". In Sec. VI Egs. (38) and (39) will be ap-
plied to the ellipsometric data, where £y, M _ f P, B—v,
and p,,,. are statistically fitted. Equation (38) is dominat-
ed by the diverging t#~" term, allowing f P, and f—vto
be determined with reasonable precision. Also, as dis-
cussed in Appendix B, fitting p,. in Eq. (39) prevents the
inaccuracy of the model noncritical profile of Eq. (34)
from causing significant error to the fitted [P, and B—v
values.

Previously [15,17] pgg was treated as a constant and
part of the prefactor to f P, tP~" was assumed to be an
unknown constant. This allowed the experimental deter-
mination of R;;,, but not the individual integrals f pP,.
The fitted pgg values ranged from 0.1X1073% to
1.8X 1073 for the five mixtures studied. The specific
values obtained were not quantitatively understood. In
Fig. 4 pgg is graphed using Eq. (39) for three mixtures,
with the one-phase result represented by solid lines and
the two-phase result by dashed lines. The values used for
Ppure are the fitted results given in Table IV and discussed
in Sec. V. Over the range of reduced temperatures for
which Egs. (38) and (39) are valid, the variation of pgg is
typically less than 107* Thus we can conclude that if
one is only interested in checking the 8~ scaling of el-
lipsometric measurements on critical adsorption in
binary liquid mixtures, the simpler fitting scheme de-
scribed in Ref. [15] and [17] would be adequate.

In Ref. [24] we numerically integrate Maxwell’s equa-
tions with the renormalization-group or the Monte Carlo

103p

105 104 10-3 102 101

FIG. 5. Graph showing two independent calculations of g
versus reduced temperature for the mixture LW. The solid line
represents the numerical integration of Maxwell’s equations for
the one-phase and the two-phase regions, which is expected to
be accurate over the entire range of ¢. The dashed lines
represent Eqs. (38) and (39), which are accurate far from T,
only. From the graph we conclude that Eq. (38) is accurate for
t>0.004 for the one-phase region and for ¢>0.0008 for the
two-phase region.

surface scaling functions P, (x) in order to produce
theoretical (p,t) curves. The numerical integration
scheme of Maxwell’s equations [23] has been tested exten-
sively against exact results and is therefore believed to be
accurate over the entire range of experimentally accessi-
ble reduced temperatures. To determine the range of ¢
over which Egs. (38) and (39) are accurate, we graphed
the Monte Carlo numerical (p,t) curves together with Eq.
(38) for each mixture. Figure 5 shows the comparison for
LW, with the numerical results represented by the solid
lines and Eq. (38) by the dashed lines. From these com-
parisons we determined that Eqgs. (38) and (39) are valid
over the fitting ranges stated in Table IV. In the specified
reduced temperature ranges, £ is always an order of mag-
nitude smaller than A.

V. EXPERIMENTAL DETAILS

Sample preparation and ellipsometric measurement
procedures are discussed in Ref. [17], while graphs
representing the (p,?) experimental data for the eight
liquid mixtures are provided in Refs. [8,14—17]. Analysis
of the experimental data using Eqgs. (38) and (39) requires
measured values for €5, €., M_, &, and ¢, (+ «,0)
for each liquid mixture. Values and references for these
quantities are provided in Table II. Values for
e(+ o0,t)=n? were determined from index of refraction
measurements (Table III) when available or else calculat-
ed from the coexistence curve using the Clausius-
Mossotti equation (24).

The most reliable method of checking that a sample
has been mixed at the critical volume fraction is to verify
that after a quench from the one-phase to the two-phase
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TABLE III. Bulk index of refraction as a function of reduced temperature for the one-phase and the

upper two-phase regions.

Mixture One-phase region n(t) Reference
AC 1.490—0.157t —0.007¢' @ [29]
w 1.3609—0.0738¢ [19]
Lw 1.3772+0.08¢ [42]
NH 1.444—0.164t +0.0116¢' ¢ [36]
PD 1.39 [43]
CM 1.380—0.1615¢ [39]
HA 1.388—0.135¢ [43]
Sch 1.333—0.206¢ [8]
Mixture Upper two-phase region n(t) Reference
AC 1.490+0.157¢ —2(0.007)¢1~*—0.157¢8 [29]
W 1.3609+0.0738¢ +0.048¢° [19]
LW 1.3772—0.08¢ +0.144¢# [34,42]
NH 1.444+0.1641 +2(0.0116): '~ —0.14¢5(1+0.41%) [36]
PD 1.39—0.0827:# [43]

region the meniscus forms in the middle of the sample
cell near the critical temperature in the two-phase region.
Of the seven mixtures we have prepared, this was verified
only for LW, NH, and PD. The other samples were
mixed at concentrations stated to be critical in the litera-
ture, without verification of criticality. In Ref. [17] it was
shown that a sample of 1.3% below the critical mass frac-
tion gave significantly different ellipsometric measure-
ments in the one-phase region, but the two-phase data
were unaffected because the upper phase retains the
correct concentration. For this reason we have more
confidence in the one-phase results for LW, NH, and PD
than for the other mixtures. The one- and the two-phase
ellipsometric data for these three mixtures are provided
in Appendix C.

VI. ANALYSIS AND RESULTS

Nonlinear least-squares regression [25] was used to fit
the (p,t) data to Eqgs. (38) and (39), where the Monte Car-
lo results have been used to estimate I,(¢) and I,(¢) in
Eq. (39), and Eq. (34) has been used in estimating R (#)
in Eq. (39). The results are given for each mixture in
Table IV. The reduced temperature range over which the
data were fitted was restricted to the range over which
Egs. (38) and (39) are valid, as discussed in Sec. IV and
shown in Fig. 5. The reduced temperature range was
generally wider for the two-phase fit than the one-phase
fit. Initially pyyres Eo+M — f P, , and B—v were fitted for
each mixture, with the exception of CM and Sch, which
contained too few data points to justify a three parameter
fit. We obtain B—v=—0.30210.005, in excellent agree-
ment with the theoretical value of —0.304 (8=0.328 and
v=0.632). Next pyy, and §o M _ J P were fitted with
B—v=—0.304 fixed at the theoretical value. This al-
lowed P,y and &M _ [P, to be determined with
greater precision. Figure 6(a) shows the experimental

data for LW (open squares) and the fit to Eq. (38) (solid
lines). Figure 6(b) shows the ratio of the residuals
Pexpt —Ps to the reproducibility of the individual p mea-
surements Ap=5X 1073 for the mixtures LW, NH, and
PD in the one- and the two-phase regions. Figure 6(b)
shows that most of the experimental data fall within two
standard deviations of the fitted value and no systematic
variation of the residuals as a function of the reduced
temperature is detectable.

In Table IV both the fitted and the measured p,,.
values are given. The agreement is reasonable, except for
the one-phase fits of AC, IW, and PD. Since the agree-
ment is good in the two-phase region, it seems unlikely
that these one-phase discrepancies are caused by an inac-
curacy in the model noncritical profile of Eq. (34). Al-
though there are a number of possible causes, we cannot
make a sound conclusion on the source of these three
discrepancies at this time.

To calculate the f P values stated in Table IV, the
values for £, and M _ from Table II were divided out of
the fitted £o M _ f P values, where Eq. (3) was used to
determine &;_ in the two-phase region. The quoted un-
certainties for f P, in Table IV were calculated from the
uncertainties in £y M _ f P, &+, and M_. The error
contributions to fPi from e(+ ,t), €y, €, and
@ (+ ©,0) have been ignored because they are deter-
mined with much greater precision. To calculate the
R,,, values quoted in Table IV, the fitted values for
Eo+M_ [P, and §,_M_ [ P_ are divided, so that Ry,
has the advantage of being independent of M _ and &,
[where Eq. (3) was used].

For the eight mixtures, the experimental means for
fP+,fP_, and R,,, are 1.84+0.08, 1.63+0.08, and
1.08+0.08, respectively, stated with one standard devia-
tion errors. In calculating each mean and error the indi-
vidual f P, and R, , values were weighted by their er-
rors o; [25]. The quoted result is X, ts,,, where
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As discussed in Sec. V, criticality was verified for the
mixtures LW, NH, and PD only. The error weighted
means for these three mixtures are f P, =1.80%0.11,

[P_=1.61£0.04, and R, , =1.1510.04, where the er-
rors represent one standard deviation. We prefer these
results, although they differ only marginally from the
error-weighted means quoted above for all mixtures.

In Ref. [24] we numerically integrate Maxwell’s equa-
tions with the renormalization-group or the Monte Carlo
surface scaling functions P.(x) in order to produce
theoretical (g,7) curves. To check for systematic errors
in our analysis, we fitted Egs. (38) and (39) to the Monte
Carlo (p,t) data for all eight mixtures and obtained
means of [P, =2.11, [P_=1.97, and R, ,=1.07.
These results for f P, f P_, and R, are, respectively,
3.3%, 0%, and 3.9%, low compared with the exact re-
sults obtained by direct integration of the Monte Carlo

TABLE IV. Nonlinear least-squares fit of Egs. (38) and (39) to ellipsometric data far from 7,. (Quoted errors are one standard de-

viation.)
Reduced
temperature Fitted Measured

Mixture Phase range B—v? Poure (1073) Poure (1073)° f P Ry4© x?
AC 1 0.002 <t <0.02 —0.300+0.010 1.78+0.08 1.091+0.05(C) 1.78+0.18 0.88+0.03 2.5
AC 1 0.002 <t <0.02 —0.304 1.80+0.05 (1.22+0.05)¢ 1.72+0.11 24
AC 2 0.0009<t<0.03 —0.305+£0.013  0.99+0.09 1.94+0.27 0.33
AC 2 0.0009<¢<0.03 —0.304 0.98+0.04 1.96+0.12 0.32
Iw 1 0.006 < ¢ —0.300+0.12 1.6+0.9 0.90£0.05(I) 2.6+2 1.75£0.12  0.15
w 1 0.006 <t —0.304 1.56+0.06 2.47+0.15 0.14
W 2 0.0015<¢ —0.306+0.016  0.90+0.05 1.39+0.18 0.72
W 2 0.0015<¢ —0.304 0.90+0.06 1.41+0.12 0.68
LW 1 0.004 <t —0.305+0.011 1.13+£0.23 1.0610.05(L) 1.80+0.18 1.17£0.02 0.74
Lw 1 0.004 <t —0.304 1.15+£0.10 1.82+0.10 0.70
Lw 2 0.0008 < 1 —0.305+0.012  0.96%0.08 1.54+0.18 0.77
Lw 2 0.0008 < ¢ —0.304 0.97+0.03 1.56+0.08 0.73
NH 1 0.005 <t <0.02 —0.3031+0.027 1.37+0.21 1.03+0.05(H) 1.64+0.35 1.03+0.04 2.7
NH 1 0.005 <t <0.02 —0.304 1.38£0.07 1.63£0.10 2.6
NH 2 0.0015<¢ —0.2974+0.013  0.99+0.08 1.6910.21 32
NH 2 0.0015<¢ —0.304 1.03+0.04 1.59+0.09 3.1
PD 1 0.01 <t —0.307£0.050 2+*1 1.10+0.05(P) 1.99+0.72 1.20£0.05 1.1
PD 1 0.01<1¢ —0.304 2.02+0.24 2.04+0.13 0.95
PD 2 0.002 <t —0.306+0.006 1.18+0.06 1.67£0.11 1.6
PD 2 0.002 <t —0.304 1.20+0.05 1.70£0.09 1.5
CM 1 0.004 < ¢ —0.304 0.61£0.18 0.74+0.05(M) 1.91+0.18 0.14

(0.66+0.05)4

HA 1 0.002<¢ —0.306+0.007  0.83+0.03 0.78+0.05(A)  1.91+0.14 0.87
HA 1 0.002 <t —0.304 0.82+0.03 1.95+0.11 0.83
Sch 1 0.003<1 —0.304 1.09+0.06 = (0.86,0.87,1.02)° 1.65+0.10 0.39

(CsF14)

#The value of —0.304 implies that 83— v has been fixed at this value.

"Measured at room temperature for this publication, unless otherwise noted. *“(C)” indicates that the value was measured on pure cy-
clohexane, “(I)” indicates isobutyric acid, etc. These are the components that are preferentially adsorbed at the surface.

°Calculated from the one- and two-phase fits with B-v fixed.
9From Ref. [8], at T =25°C.
°From Ref. [8], at 26, 40, and 51 °C, respectively.
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functions P, (x) in Sec. II. This suggests that the fitted
experimental f P, and R,,;, values are also slightly low.
We thus add these systematic errors to the experimental
means of our three best mixtures to obtain our final ex-
perimental results

[P.=186x0.11, (42)
JP_=1.61+0.04, (43)
Ry, =1.19%0.04 . (44)

In Figs. 7(a)-7(c) the experimental [P, and R,
values are represented by open squares with error bars of
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FIG. 6. (a) Ellipsometric data for the mixture LW (open
squares) in the one-phase and the two-phase regions and the fit
of the data to Eqgs. (38) and (39) (solid lines). (b) Ratio of the re-
sidual p,,: —pg to the reproducibility of the individual p mea-
surements, Ap=5X 1073 versus reduced temperature. Dexpt 18
the experimental 5 data, while py, is the function fitted to the
data using Egs. (38) and (39). The key indicates both mixture
and phase.
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FIG. 7. Plots representing (a) fP+, (b) fPV, and (c) Ry4.
The squares with one standard deviation error bars represent
the values for each mixture determined by fits of Egs. (38) and
(39) to the experimental data using nonlinear least-squares re-
gression. The solid lines show the experimental error-weighted
mean of the three most reliable samples LW, NH, and PD,
shifted to compensate for small systematic errors. The dashed
lines show the theoretical renormalization-group Monte Carlo,
and interpolation values, labeled by RG, MC, and I, respective-

ly.
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one standard deviation. The solid lines represent the ex-
perimental results of Eqs. (42)—(44). The dashed lines la-
beled RG and MC represent the theoretical f P, and
R, 4 values calculated directly from the renormalization-
group and Monte Carlo profiles, respectively, as dis-
cussed in Sec. II. The dashed lines labeled I represent the
theoretical values obtained from the interpolation study.
Except for the one-phase result of IW and the two-phase
result of AC, all the experimental f P values are within
two standard deviations of the experimental results of
Eqgs. (42) and (43). The R,,, values for the three most
reliable mixtures LW, NH, and PD are also in reasonable
agreement. We hope to clear up the discrepant f P, and
R,r4 values by remeasuring AC and IW samples for
which criticality has been verified in a future paper [26].
Finally, we have also examined the effects of slight
changes in I,(t), I,(t), and R(¢) on the experimental
values for [P, and R, ,. The experimental (5,t) data
were refitted to Eqgs. (38) and (39) with the Monte Carlo
results for I(¢), I,(t), and z, [which affects R (¢) in Eq.
(B7)] replaced by the renormalization-group results. We
found that [P, and R, are changed by less than 1%.

VII. SUMMARY AND CONCLUSIONS

We have presented a method of analyzing ellipsometric
data on critical adsorption in binary liquid mixtures. Us-
ing the data far from T, our analysis determines the
universal integrals f P defined in Egs. (10) and (11). We
have presented evidence that, provided M _ and &, are
measured accurately for the mixture, the method deter-
mines f P_ from the two-phase data very accurately,
while the fitted value for f P, from the one-phase data
and the result for R,, , are systematically low by approxi-
mately 3-4 %. The cause of the systematic error is not
understood.

We have applied this analysis to existing data on eight
critical binary liquid mixtures [8,14—17]. The mean
values from the three most reliable data sets, taken on the
mixtures LW, NH, and PD, are [P, =1.86%+0.11,
JP_=1.6110.04, and R,,,=1.19+0.04 for the ratio
defined in Eq. (9). The systematic errors have been added
to the mean values and the quoted errors represent one
standard deviation. While errors in the experimentally
determined values of M _ and &, for each mixture cause

errors in the experimental f P, values, the determina-
tion of the ratio R,, , is independent of these parameters.

In Table V the three sets of theoretical values for the
universal quantities f P, and R, , are compared with
our experimental values. Our experimental result for
f P agrees well with the renormalization-group result
but is more than three standard deviations lower than the
interpolation value. Our experimental f P_ result is
significantly higher than the renormalization-group value
and significantly lower than the Monte Carlo value. The
experimental R,,, value is in reasonable agreement with
the Monte Carlo value, but is significantly lower than the
renormalization-group and interpolation results. In sum-
mary, although we now possess a far better qualitative
understanding of the critical adsorption amplitudes, none
of the three theoretical studies are in consistent quantita-
tive agreement with our experimental results.

In all previous experimental studies of critical adsorp-
tion the contributions to g from capillary wave fluctua-
tions have been ignored, probably because these contribu-
tions are expected to be small. The capillary wave contri-
butions scale as o~!, where o is the surface tension.
They provide a significant contribution to g for the criti-
cal interface [27], where o is small. We will consider this
contribution in a future paper to see if it can resolve the
discrepancies between theory and experiment for critical
adsorption.

We hope that this experimental study will stimulate
further theoretical work on critical adsorption. We note
a number of theoretical issues which still have to be
resolved before we can be completely satisfied with the
theoretical surface scaling functions P, (x). At present
the uncertainties on the estimates of f P, and R, for
the renormalization-group calculations [10] and Monte
Carlo simulations [11] are not known, while the uncer-
tainties on [P for the interpolation theory are rather
large. The Monte Carlo simulations display an oscilla-
tion in P_(x)—1 rather than a purely exponential decay
for large x, as discussed in Sec. II and displayed in Fig.
2(b). Equations (3) and (23) imply that the ratio ¢ /c_
has the universal value 0.71. While the Monte Carlo re-
sults yield the value 0.71 for this ratio, the interpolation
and renormalization-group results give 0.76+0.05 and
0.64, respectively. Finally, we believe that in the two-
phase region desorption of the lighter component L from
the upper liquid-vapor surface needs to be considered

TABLE V. Comparison of the experimental mean with the existing theoretical values for the univer-

sal critical adsorption parameters

fPi and R4 defined in Egs. (9)-(11).

f P, f pP_ Rua
Experimental mean?® 1.86+0.11 1.61+0.04 1.19+0.04
Renormalization group® 1.91 1.44 1.33
Monte Carlo® 2.18 1.97 1.11
Interpolation? 2.27+0.33 1.84+0.33 1.32+0.07

2Determined in this publication.
"Reference [10].
‘Reference [11].
dReference [13].
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more carefully theoretically [2].

It appears that further work is necessary in order to
resolve the discrepancies between experiment, computer
simulation, and theory, before an accurate quantitative
description of critical adsorption can be achieved at non-
critical surfaces.
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APPENDIX A: DERIVATION OF p.

In Egs. (36) and (37), p is defined as the integral over
the critical adsorption profile in the liquid, from O to
+ 0. Setting e( — o,t)=1 for the bulk vapor phase and

Pc™ A

ical values and asymptotic forms for the theoretical sur- using Eq. (31) for e(z,t) in Eq. (36) gives after
face scaling functions from the renormalization-group  simplification
J
Az |14+-A2D_
T \/£(+oo,t)+1[s(+oo,t)+2]2f+°° n(+o,0) i AD
3e(+ o0,1) 0 Az 2A(z,1)
1—n(+ ,?) 1+2n(+ ,t)

No approximations have been made here, beyond the ap-
proximations inherent in Eq. (31) and (36). A binomial
expansion gives

1
_ A(z,1)
{1 1—17(+oo,t)] [1+

1+279(+ o0,1)

[1—4n(+ 0,1)]Alz,t)
[1—n(+o0,0)][1+279(+ o0,1)]

+0[A¥z,1)], (A2)

2A(z,1) ]

where O [A%(z,t)] represents terms of order [A(z,¢)]? and
higher. Values of the first-order correction in (A2) at
z =0 and ¢ =0 are given for the eight liquid mixtures in
Table I. Since 7(+ o,t)=1 in addition to A(z,t) being
small, this correction is extremely small and will be
neglected. Equation (A1) then becomes

— T

+
Po= —xfi(t)fo Alz,)[1+A(z,t) /q(+ ,8)]dz ,

(A3)
where
_ Ve(+oo,t)+1[e(+ o,t)+27]?
Se(t) 3e(+ o0,1) ' (Ad)
Now using definition (30) and the substitution

x =(z +z,)/&4, Eq. (A3) becomes I

I,(2) (Egv /2, VB!

_ (An)M_ cl
T (4 o0,0) | 2B/v—1

+

2C:t

+ 1—B8/v

xPi(0)+Iy +L(P, ) exp(—2x,)— -

(2, /E0) PPy (0)tP—(z, /Eg )P (0t | .

Pe=—3 LN ANM_E,

X [Il(t)+12(t)+ [fPi ]tﬁ_"] : (A5)
where
_(AmM_ . B 2 2
Il(t)——__——'q(+oo,t) s, [P (x)=Ps()Pdx t ,
(A6)
2, /64 _
Iz(t)=—f0 [Py(x)—Py(o0)]dx tA™, (A7)

and fPi are defined in Egs. (10) and (11). I,(¢) and I,(2)
are small compared with the third term in Eq. (AS).
Rather than neglecting I,(¢) and I,(¢) entirely in Eq.
(A5), we approximate their behavior by assuming that the
Monte Carlo functions for P.(x) [11] are sufficiently
close to reality and can be used in Eqgs. (A6) and (A7).
This assumption is tested in Sec. VI.

The asymptotic form of Eq. (8) can be used in Eq. (A7)
to give
C+
L()=P_ (o )z, /&g )tFP—

)1~B/V .
1—B/v

(Ze /§0i

(A8)
The integral I, is determined by using the asymptotic

form of Eq. (8) from z, /&, to x,, numerical integration
from x, to x,, and the asymptotic form of Eq. (7) from
X, to + oo,

c 2¢,x17AVP ()
1—B/v

t2B—v

(2B/v—1)x%ﬂ/"~1

(A9)
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Values for x; and x, were given for the renormalization-
group and Monte Carlo functions in Sec. II. The quanti-
ty I'y appearing in Eq. (A9) is defined by

0.952, —+

Ii= fx,z[Pi(")"Pi( ©)Pdx =16 648,

(A10)

where the numerical values are obtained using the Monte
Carlo functions P (x). The renormalization-group scal-
ing functions give I, =0.398 and I'_ =0.104.

APPENDIX B: DERIVATION OF pyc

In Eq. (36) and (37), pyc is defined as the integral over
the noncritical liquid-vapor profile in the vapor, from
— o to 0. Setting e( — «0,¢)=1 for the bulk vapor phase,

7 Vet w,0+F1
A e(+o0,t)—1

0 [e(z)—e(+ o0,2)][e(z)—1]
xJ_, e(z) dz

PNnc™

(B1)

As discussed in Sec. III, the noncritical profile will be
confined to the vapor side (z <0) of the surface and will

be assumed to be approximately the same as the liquid-
vapor profile of the pure liquid L (H) for group L (group
H). Under this approximation, the Drude equation (36)
applied to the ellipsometric measurement of the liquid-
vapor surface of pure L (H) gives

L 7 VeE+1l o [e(2)—g ][elz)—1]
ppure___k— f

e—1 4. (2) dz . (B2)

The noncritical optical dielectric profile constructed
for our model is given in Eq. (34), which when used in Eq.
(B2) gives

ﬁpure:_%vsi+1[l+exp( _ze/gV)]gV

X {In[1+exp(z, /€y )]

€;

g;t(g;—1exp(—z,/Ep)

Xln{e;[1+expl(z, /Ep)]} T - (B3)

TABLE VI. Reduced temperature versus p data for the critical mixture LW (2,6 lutidine—water).

t p (1073 t p (1073) t p (1073)
LW one-phase region
49891072 —0.772 5.255X 1073 —2.758 1.005X1073 —5.037
4.346X 1072 —0.768 4.932X1073 —2.878 6.756 X 10™* —5.520
3.703X 1072 —0.877 4,798 %1073 —2.951 5.744 X107 —5.870
3.058 X 1072 —1.044 4.596X1073 —2.955 49611074 —5.948
2.413X1072 —1.234 4.269%X1073 —3.071 43411074 —6.003
2.091X1072 —1.342 3.939x1073 —3.174 3.656X107* —6.087
1.769X 1072 —1.453 3.613X1073 —3.273 3.492X 1074 —5.966
1.447X 1072 —1.657 3.287x1073 —3.386 3.003x107* —6.138
1.124X 1072 —1.928 2.964X 1073 —3.559 2.317X 1074 —6.160
8.023 1073 —2.292 2.640X 1073 —3.722 1.762X 1074 —6.119
7.229%1073 —2.513 2.311%x1073 —3.919 1.110x 1074 —6.008
6.900Xx 1073 —2.534 1.981x1073 —4.114 6.201X107° —5.828
6.564X 1073 —2.550 1.655X 1073 —4.384 4.896X 1073 —5.833
6.234X1073 —2.603 1.576 X103 —4.593 2.937X1073 —5.694
5.901 1073 —2.634 1.322X1073 —4.701 1.306 X 1073 —5.615
5.571x1073 —2.671
LW two-phase region

54161072 0.551 4.821X1073 —0.444 6.103x 1074 —2.124
4,768 %1072 0.499 4.527X1073 —0.462 5.451x107* —2.280
4.121X 1072 0.480 4.191%x1073 —0.511 4.733X 1074 —2.360
3.475X1072 0.430 3.871x1073 —0.571 3.786x107* —2.553
2.827X%1072 0.482 3.551X1073 —0.631 3.264x107* —2.741
2.500X 1072 0.440 3.225%1073 —0.713 2.774X 1074 —2.941
2.177X 1072 0.263 2.898X 1073 —0.792 2.742X107* —2.966
1.853X 1072 0.238 2.572X1073 —0.876 2.056X 1074 —3.238
1.528 X102 0.208 2.242x1073 —0.961 1.338X 1074 —3.585
1.204X 1072 0.008 1.909x 1073 —1.055 7.833X 1073 —4.017
8.816 1073 —0.137 1.593X 1073 —1.123 6.854X107° —4.069
5.516X 1073 —0.335 1.586X 1073 —1.217 4.569%1073 —4.321
5.183%x 1073 —0.369 1.257%1073 —1.406 2.285X107° —4.554
4.844X1073 —0.425 9.302X 1074 —1.685
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In Table IV the values given for p,. were measured on
the liquid-vapor surface of pure component L (H) for
group L (group H). For each mixture the noncritical va-
por correlation length £, was calculated from Eq. (B3)
using the measured value of p,,.. These & values are
provided in Table II. Our measured value of p,,. has
been used for each mixture except for Sch, where
Ppure=0.94 X 1072 was used.

With £ fixed, Eq. (34) could be applied to Eq. (B1) to
give pyc with no adjustable parameters. This, however,
would make our analysis quite sensitive to the inaccuracy
of our model noncritical profile. As stated in Sec. III, we
want to minimize the sensitivity of our analysis to the
noncritical profile because the primary objective of this
paper is to study the critical profile. Therefore we
proceed by using Egs. (B1) and (B2) to obtain the result

593
e+t |V 61
Prc g +1 e(+ o0,7)— 1 Poure
T Ve(+ o,t)+1[e(+ 0,t)—¢;]
A e(+ o0,t)—1
4]
X [ [1=1/e(2)]dz . (B4)
We define the quantity
[e(+w,0)—g,][° [1—1/e(z)1dz
Ry(t):— — (Bs)

fi) [e(z)—¢;][1—1/e(z)]dz

Use of Eq. (B2) shows that R, (t) is the ratio of the
second term to the first in Eq. (B4). This provides the re-
sult

TABLE VII. Reduced temperature versus g data for the critical mixture NH (nitrobenzene-n-

hexane).
t p (1073 t p (1073 t p (107%)
NH one-phase region
8.480X 1072 2.519 7.881x 1073 4.529 1.757x 1073 6.368
6.775X1072 2.686 7.536Xx1073 4.598 1.423x1073 6.463
5.082X 1072 2.864 7.199% 1073 4.657 1.075%x1073 6.702
3.410X 1072 2.957 6.854X 1073 4.737 9.177Xx10™* 7.009
3.388X 1072 3.147 6.786X 1073 4.684 8.563X107* 7.021
3.068 X 1072 3.153 6.513%x1073 4.850 7.949X10™* 7.095
2.723X1072 3.242 6.168x1073 4,734 7.301Xx107* 6.981
2.380% 1072 3.365 5.817x 1073 4.764 7.301X107* 7.123
2.044X1072 3.501 5.466X 1073 4.888 6.721X107* 7.148
1.702Xx 1072 3.666 5.128 1073 5.141 6.243X107* 7.063
1.691Xx1072 3.739 4.797X1073 5.223 5.629X10™* 7.080
1.364X 1072 3.751 4.459%1073 5.307 5.015X107* 7.136
1.026 X 1072 4.251 4.125%1073 5.425 4.367X107* 7.188
1.023%x1072 4.067 3.784X 1073 5312 3.923X107* 7.478
9.918X1073 4.280 3.456X 1073 5.382 3.719X107* 7.126
9.580%x 1073 4.328 3.111x1073 5.522 3.139x10™* 7.030
9.239X1073 4.379 2.777%X1073 5.797 2.559X107* 6.878
8.901 1073 4.406 2.439x1073 5.974 1.945x107* 6.613
8.557X 1073 4.325 2.098%1073 6.150 1.501%x107* 6.249
8.219x1073 4.373
NH two-phase region

2.207X1072 1.565 5.131x1073 2.295 6.482X107* 3.836
2.038X1072 1.583 3.439%1073 2.570 6.209X 1074 4.039
1.869X 1072 1.637 3.231x1073 2.571 5.902X 10™* 3.922
1.700X 1072 1.685 3.013x1073 2.760 5.288X107* 4.001
1.530%x 1072 1.725 2.675X1073 2.904 4,708 X 107* 4.118
1.386X 1072 1.787 2.334x1073 3.044 4,060x10™* 4.230
1.361 1072 1.774 2.003x1073 3.016 3.480x10™* 4.362
1.192Xx1072 1.846 1.658 1073 3.144 2.832Xx107* 4.732
1.120%x1072 1.913 1.307x1073 3.477 2.798X107* 4.495
1.022X1072 1.924 9.621X107* 3.721 2.286X107* 4.676
8.522X 1073 2.024 8.870x10™* 3.572 1.706 X 1074 4.880
7.564%1073 2.125 8.265X10™* 3.626 1.058X 1074 5.124
6.830X1073 2.099 7.676X107* 3.701 4.435X1073 5.365
5.790Xx 1073 2.569 7.096X 1074 3.774 1.365X1073 5.606
5.141X1073 2.452
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TABLE VIII. Reduced temperature versus g data for the critical mixture PD (3-

methylpyridine—D,0).

e(+ o0,t)—1

t 7 (1073) t p (107%) t p (107%)
PD one-phase region
4.504% 1072 —1.280 9.461X 1073 —3.103 3.415%X1073 —4.823
4.180% 1072 —1.335 8.903X 1073 —3.459 3.096X 1073 —4.843
3.858 X 1072 —1.458 8.258 1073 —3.480 3.009%X 1073 —4.638
3.533X 1072 —1.648 7.616X 1073 —3.605 2.773 %1073 —4.996
3.210X 1072 —1.575 6.968 X103 —3.583 2.444% 1073 —5.005
2.887X 1072 —1.699 6.320x1073 —3.808 2.125%1073 —5.277
2.564X 1072 —1.842 6.230X 1073 —3.599 1.799x 1073 —5.483
2.239X 1072 —1.988 5.675X1073 —4.065 1.480x 1073 —5.591
1.917X 1072 —~2.190 4.975%1073 —4.170 1.154X 1073 —5.732
1.592X 1072 —2.445 4.382%1073 —4.461 8.384X107* —5.693
1.270X 1072 —2.696 4.053X1073 —4.498 5.159x10™* —5.706
9.541X 1073 —3.379 3.740X 1073 —4.625 1.870X 107 —5.211
PD two-phase region
5.171X 1072 0.068 1.948 X102 —0.196 3.360X 1073 —1.157
4.849% 1072 0.113 1.625X 1072 —0.274 3.357%X1073 —1.399
4.527X1072 0.137 1.303X 1072 —0.460 2.705% 1073 —1.658
4.205X1072 0.063 9.806 X 1073 —0.650 2.064X 1073 —1.978
3.882X 1072 0.178 6.581x1073 —0.992 1.093%x1073 —2.591
3.560X 1072 —0.017 5.940% 1073 —0.970 7.739X107* —3.113
3.237X1072 —0.071 5.295%107? —1.070 4.514X107* —3.866
2.914X 1072 0.002 4.650%1073 —1.184 1.354X107* —4.864
2.593x1072 —0.072 4.005X1073 —1.288 1.354 X107 —4.276
2.270X 1072 —0.089
172 €. —1

e(to,0+1 ] i (14 R () pure - (B6)

g, +1

Using Eq. (34) in Eq. (BS) gives

[e;—e(+ oo,t)]In{e;[1+exp(z, /Ep)]}

(B7)

(e;,— 1)exp(—z,/&y)In[1+exp(z, /Ey)] —¢gIn(g;)

As determined by Eq. (B7), Ry (t) at t =0 is provided for each mixture in Table I. Though R (¢) is much too large to
be neglected, the dependence of py¢ in Eq. (B6) on the specific model noncritical profile has been reduced. In applying
Eq. (B6) to the experimental data, p,,,. Will be fitted as an adjustable parameter. R (?) is only weakly dependent on ¢,
therefore an inaccurate model noncritical profile should merely shift the fitted g,,,,. value away from the measured value
while introducing negligible error to the important fitted critical parameters f P,

APPENDIX C: (p,t) DATA

In Tables VI, VII, and VIII we provide the ellipsometric data for the mixtures LW, NH, and PD. These are our
most reliable data sets in that criticality was verified for these three mixtures (see Sec. V). Sample preparation, ellip-
sometric measurement procedures, and the measured T, values for these three samples are given in Ref. [17]. The tem-
perature control had 0.5 mK stability for each data point, while the p measurements were reproducible to within an er-
ror of £5X 107>,
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